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A general formulation of the network tolerance problem is presented. It allc,ws to deal,

in a unified way, with all the disturbing effects, that may affect the network response. It

can be used for the realistic analysis and design of networks. Possible simplifications of

the formulation are discussed.

Introduction

Due to various disturbing effects the
response of a microwave network can differ
considerably from that predicted by a theore-
tical analysis.
The physical parameters of the network (e.g.
dimensions, properties of materials) can be
different from their nominal values, due to
physical tolerances. Statistically dependent
variations of the physical parameters may occur,
caused e.g. by disturbing effects in the pro-
duction process, affecting several parameters
simultaneously.
To calculate the network response, a model of
the physical structure is needed. The model

parameters are affected by model uncertainties,
an exact model usually not being available.
Finally, the practical source and load are
different from those assumed in the design.
This amounts to the introduction of external
disturbing effects, such as the mismatches
of source and load, and uncertainties on the
position of the reference planes.
Any realistic design method should take into
account the response variations caused by all
these disturbing effects.
We shall present a formulation of the tolerance
probleml,2, which is general enough to deal with
all disturbing effects in a unified way. This
formulation is a generalization of that given
by Bandler et al.3-5. It can be incorporated
in known methods for worst-case analysis and
designl-7 as well as for statistical analysis
and designs-lo.

General formulation of the tolerance problem

The disturbing effects wi$l be represen-
ted by statistical variables Pj ,j=l,2, . . . ,k i,
i=l,2 ,...,n, oralso v., j=l,2, . . ..k ,
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are sta-
tistically independent. This implies that it

should be wossible to DinDoint the independent
disturbing-effects in ;he”network. -
The network parameters have nominal values

iO
Pj t j=l,2, . . ..kOi. and actual values p~r

jyl,2, . . ..ki. for i=l,2, . . ..n. We define ko,

P 10 and ~orias well as k, ~= and ~, analogous-
ly to k , M and ~ in (1) and (2) .
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The fol owzng relationships between the statis-

tical variables and the parameters are intro-
duced :

iO ‘
pl (p ~M1) r i=lr2r...,n (3)

and

gi0(p1,P_2, . . ..~ ‘-1) , i=2!,3, . . ..n (4)

Usually, pl contains the most fundamental para-

meters af~ected by independent statistical

variations, while En contains the resoonse

functions (e.g. at kn sample frequencies) .

It is usually assumed that, for j=l,. . . ,kpr
+

< v, < v.
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The region of all possible outcomesl-c is

defined as

R ={~lp~<pj<P~,j=l, . . ..kp}
P

(6)

The tolerance regionl-s is defined in the
parameters~ace as

R
D

= {E(LJ)]K E R,,} (7)
!-

Rp is an orthotope, but R “can have an arbi-
trary shape.

p

Similar regions can be defined in subspaces
of the ~-or p-space, e.g. :

(9)

where ~p~ and ~P~ are projection operators.

Relationship (3) is often reduced to

+
with p. = -$ = 1.

3

$ is an absolute or relative tolerance.

Reduced formulation

If the complete formulation of a network
problem should be too complicated for practi-
cal purposes, it can be simplified as follows.
Take some i > 1, such that, for all i ~ ~ & n,

(4) is reduced to .
~J?O (pi, PC-l,

. . . .

Let
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and D;io such that, for j=l, . . ..ki.
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The whole problem is then reformulated with a

reduced number of variables (k tk
i p,i+l+”””+k~n)

i i+l
and with parameters P , D

n
J.../p.

The reduced formulat~on yields pessimistic re-

sults : the response variations predicted are

generally larger than those given by the origi-
nal formulation. The reason is that the fluc-

tuations of ~1 were originally statistically
dependent, while they are now represented by
statistically independent variables. In fact,
RI is replaced by the smallest orthotope con-
t~ining it.

Applications

The worst-case for parameter p; is defi-

ned as the solution of

Min P;(L) (15)
~s R

v
If p? is a response function (i=n) we have the
clas~ical worst-case analysis problem1,2,G ,
Recently an efficient algorithm was proposed2~G
for the solution of (15).
An accurate formulation may require a large
k even for simple networks. The availabili-
t~’of an efficient algorithm is then a prere-
quisite for the practical usefulness of the
formulation.

Examples

Example 1. Consider the one-section

stripline transformer of fig. 1. Data are gi-

ven in Table I.
It is assumed that the circuit is produced by
cutting a mask, with dimensions Wi(i=l,2,3)

and L, which is reduced by a factor K. The

circuit is obtained by etching. Its nominal

physical dimensions are given by

w; =WiK+Er i = 1,2,3 ;tO=LK+E

where E is the “etching parameter” (E” = O) .
WL,L and E are affected by absolute tolerances,

K by a relative tolerance. The physical para-

meters E ,brt have relative tolerances.
From wi,~ and t, D? is calculated, for i=l,;~3,
by a formula given~by Oliner and Altschuler .
These model parameters are affected by relative
uncertainties. Z, = Z~ is then calculated
from : ,b,t and D:.
The to~al line length ~t is nominally equal to
t, but is affected by a ~odel uncertainty on
d. The phase-angle $=6 follows immediately.

X~(i=l,2) is a function of Di,Di+lr&r and blz,
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Fig. 1. (a)one-section stri~line transformer
(b)equivalent circu~t

and has a relative uncertainty.
The modulus of the input reflection coeffi-
cient, [PI= lPIO,w.r.t.z~ and Z~ is calculated
from Z1,Z2,Z3,6,XI and x2. If a worst-case
analysis should find the upper bound of the
input reflection coefficient, the effect of
the assumed mismatches and arbitrariness of
the reference pla~~s is eliminated by using
expli~it formulas . These give the urmer bound
I P inl of the input reflection coefficient,
w.r. t. ZS and ZLr as a function of Ipl ,Z11Z3.

The response function to be used in (15) is
then, with a specification S,

g=s-lpinlo

We take
lT

P =1W1W2W3LKE],

2T =
P [WlW2W3~e bt]

P3T
1? lr, #T == [Dl D2 D3 t [Zl Z2 Z3 (3 xl X21

P5 = IPI, P60= lPinlO/ P6=9

There are 15 ~-variables.
Fig. 2 shows the result of a worst-case analy-
sis, both using the complete formulation (a)
and simplified formulations, obtained either
by a reduction or by neglecting certain dis-
turbing effects.

TABLE 1. DATA FOR EXAMPLES Example 1 Example 2

nominal impedance generator, load 50.Q , 20.n
mismatch (max.inodulus of reflection coefficient) generator 0.025

load 0.025
dimensions of mask

‘1
92.48 + 0.1 mm

‘2 ‘w
178.20 ~ 0.1 mm 91.28 ~ 1. mm

:
308.84 ~ 0.1 mm

168.74 ~ 0.1 mm 188.24 + 1. mm

reduction factor K 0.05 7 0.5 % 0.05 7 20. %
etching tolerance 0.02 a 0.05 %
dielectric constant substrate & 2.54 + 1. % 2.54 + 20. %
substrate thickness br 6.35mm+ 1. % 6.35 mm-+ 20. %
strip thickness t 0.051 mm-+ 5. % 0.051 mm-f 20. %
uncertainty on effective line width D1,D2,D3,D 1. % — 3. %

total line length It 0.4 mm

parasitic reactance X1,X2 3. %
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Fig. 2. TJpper bound of inmt reflection coef-

ficient of one-section stripline transformer,

(a) general formulation; (b) formulation re-
duced with i=2; (c) formulation reduced with
i=~ ; (d) formulation reduced with i=2 and i=4;
(e) general formulation without model uncer-
tainties; (f) idem, without model uncertain-
ties and without tolerances; (g) nominal in-
put reflection coefficient w.r.t. Z1 and Z3.

Example 2. Consider a single stripline
section (width w, length ~) . We use the same

relations as in example 1 and assume uncer-
tainties on W,L,K,E, ~r,b,t and D. Let

lT
=[wLKE], ~2T .

P [w+? crbtl,

3T
= [D]

~4T
P r = [z ‘r]

where T is the delay t~me. Relevant data are

given in4Table I. Fig. 3 shows the tolerance

region R in different situational For Cases

c and d,pthe 4 uncertainties on p were

reduced to 2 uncertainties on w and {. The

effect of a reduction with i=4 is ,~llustrated

by the circumscribing orthotope Rp (case a).

Conclusion

The unified formulation of the network

tolerance problem allows tO take into account

all effects that can disturb the response of
microwave networks. It can be incorporated in

existing methods for analysis and design, lea-
ding to realistic design procedures.
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Fig. 3. Tolerance region R4 in example 2;

(a) complete formulation; !b) idem, without
model uncertainty on D; (c) formulation reduced
with i~2; (d) idemr without model uncertainty
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