

ABSTRACT

A general formulation of the network tolerance problem is presented. It allows to deal, in a unified way, with all the disturbing effects, that may affect the network response. It can be used for the realistic analysis and design of networks. Possible simplifications of the formulation are discussed.

Introduction

Due to various disturbing effects the response of a microwave network can differ considerably from that predicted by a theoretical analysis. The physical parameters of the network (e.g. dimensions, properties of materials) can be different from their nominal values, due to physical tolerances. Statistically dependent variations of the physical parameters may occur, caused e.g. by disturbing effects in the production process, affecting several parameters simultaneously.

To calculate the network response, a model of the physical structure is needed. The model parameters are affected by model uncertainties, an exact model usually not being available. Finally, the practical source and load are different from those assumed in the design. This amounts to the introduction of external disturbing effects, such as the mismatches of source and load, and uncertainties on the position of the reference planes.

Any realistic design method should take into account the response variations caused by all these disturbing effects.

We shall present a formulation of the tolerance problem^{1,2}, which is general enough to deal with all disturbing effects in a unified way. This formulation is a generalization of that given by Bandler et al.³⁻⁵. It can be incorporated in known methods for worst-case analysis and design¹⁻⁷ as well as for statistical analysis and design⁸⁻¹⁰.

General formulation of the tolerance problem

The disturbing effects will be represented by statistical variables $\mu_j^i, j=1, 2, \dots, k_{\mu^i}, i=1, 2, \dots, n$, or also $\mu_j^i, j=1, 2, \dots, k_{\mu^i}$, where

$$k_{\mu} = \sum_{i=1}^n k_{\mu^i} \quad (1)$$

We define

$$\underline{\mu}^i = \begin{bmatrix} \mu_1^i \\ \vdots \\ \mu_{k_{\mu^i}}^i \end{bmatrix}, \quad i = 1, \dots, n; \quad \underline{\mu} = \begin{bmatrix} \underline{\mu}^1 \\ \vdots \\ \underline{\mu}^n \end{bmatrix} \quad (2)$$

We shall assume that the μ -variables are statistically independent. This implies that it should be possible to pinpoint the independent disturbing effects in the network.

The network parameters have nominal values

$p_j^{i0}, j=1, 2, \dots, k_{O^i}$, and actual values $p_j^i, j=1, 2, \dots, k_i$, for $i=1, 2, \dots, n$. We define k_O , p_O^{i0} and p_O^i , as well as k , \underline{p}^i and \underline{p} , analogously to k_{μ} , $\underline{\mu}^i$ and $\underline{\mu}$ in (1) and (2).

The following relationships between the statis-

tical variables and the parameters are introduced :

$$p^i(p^{i0}, \underline{\mu}^i), \quad i = 1, 2, \dots, n \quad (3)$$

and

$$p^{i0}(p^1, p^2, \dots, p^{i-1}), \quad i = 2, 3, \dots, n \quad (4)$$

Usually, p^1 contains the most fundamental parameters affected by independent statistical variations, while p^n contains the response functions (e.g. at k_n sample frequencies). It is usually assumed that, for $j=1, \dots, k_{\mu^i}$,

$$\underline{\mu}_j^i \leq \mu_j^i \leq \overline{\mu}_j^i \quad (5)$$

The region of all possible outcomes¹⁻⁶ is defined as

$$R_{\mu} = \{\underline{\mu} \mid \underline{\mu}_j^i \leq \mu_j^i \leq \overline{\mu}_j^i, j = 1, \dots, k_{\mu^i}\} \quad (6)$$

The tolerance region¹⁻⁵ is defined in the parameterspace as

$$R_p = \{p(\underline{\mu}) \mid \underline{\mu} \in R_{\mu}\} \quad (7)$$

R_{μ} is an orthotope, but R_p can have an arbitrary shape.

Similar regions can be defined in subspaces of the μ -or p -space, e.g. :

$$R_{\mu}^i = \{\underline{\mu}^i \mid \underline{\mu} \in R_{\mu}\}, \quad R_p^i = \{p^i(\underline{\mu}) \mid \underline{\mu} \in R_{\mu}\} \quad (8)$$

Then

$$R_{\mu}^i = \mathcal{P}^{\mu i} R_{\mu}, \quad R_p^i = \mathcal{P}^{p i} R_p \quad (9)$$

where $\mathcal{P}^{\mu i}$ and $\mathcal{P}^{p i}$ are projection operators.

Relationship (3) is often reduced to

$$\mu_j^i = p_j^{i0} + \mu_j^i \delta_j^i, \quad \text{or} \quad p_j^i = p_j^{i0} (1 + \mu_j^i \delta_j^i) \quad (10)$$

with $\mu_j^+ = -\mu_j^- = 1$.

δ_j^i is an absolute or relative tolerance.

Reduced formulation

If the complete formulation of a network problem should be too complicated for practical purposes, it can be simplified as follows. Take some $i > 1$, such that, for all $i < \ell \leq n$, (4) is reduced to

$$p^{\ell 0}(p^1, \dots, p^{\ell-1}) \quad (11)$$

Let

$$p_{jM}^i = \max_{\underline{\mu}^i \in R_{\mu}^i} p_j^i(\underline{\mu}^i), \quad p_{jm}^i = \min_{\underline{\mu}^i \in R_{\mu}^i} p_j^i(\underline{\mu}^i) \quad (12)$$

for $j = 1, \dots, k_i$, where

$$\underline{\mu}^i = \begin{bmatrix} \underline{\mu}^1 \\ \vdots \\ \underline{\mu}^i \end{bmatrix}, \quad R_{\mu}^i = R_{\mu}^1 \oplus R_{\mu}^2 \oplus \dots \oplus R_{\mu}^i \quad (13)$$

Define δ_j^i and p_j^{i0} such that, for $j=1, \dots, k_i$,

$$p_{jm}^i = p_j^{i0} + \delta_j^i, \quad p_{jm}^i = p_j^{i0} - \delta_j^i \quad (14)$$

The whole problem is then reformulated with a reduced number of variables $(k_1 + k_{i+1} + \dots + k_n)$

and with parameters $p_i^i, p_{i+1}^i, \dots, p_n^i$.

The reduced formulation yields pessimistic results : the response variations predicted are generally larger than those given by the original formulation. The reason is that the fluctuations of p_i^i were originally statistically dependent, while they are now represented by statistically independent variables. In fact, R_i^i is replaced by the smallest orthotope containing it.

Applications

The worst-case for parameter p_j^i is defined as the solution of

$$\min_{\mu \in R_i^i} p_j^i(\mu) \quad (15)$$

If p_j^i is a response function ($i=n$) we have the classical worst-case analysis problem^{1,2,6}.

Recently an efficient algorithm was proposed^{2,6} for the solution of (15).

An accurate formulation may require a large k_i , even for simple networks. The availability of an efficient algorithm is then a prerequisite for the practical usefulness of the formulation.

Examples

Example 1. Consider the one-section stripline transformer of fig. 1. Data are given in Table I. It is assumed that the circuit is produced by cutting a mask, with dimensions w_i ($i=1,2,3$) and L , which is reduced by a factor K . The circuit is obtained by etching. Its nominal physical dimensions are given by

$$w_i^0 = w_i K + E, \quad i = 1,2,3, \quad l^0 = L K + E$$

where E is the "etching parameter" ($E^0 = 0$).

w_i, L and E are affected by absolute tolerances, K by a relative tolerance. The physical parameters ϵ_r, b, t have relative tolerances. From w_i, b and t , D_i^0 is calculated, for $i=1,2,3$, by a formula given by Oliner and Altschuler^{1,3}. These model parameters are affected by relative uncertainties. $Z_i = Z_i^0$ is then calculated from ϵ_r, b, t and D_i^0 .

The total line length l_t^0 is nominally equal to l , but is affected by a model uncertainty on d . The phase-angle $\beta = \beta^0$ follows immediately. x_i^0 ($i=1,2$) is a function of D_i, D_{i+1}, ϵ_r and b^0 ,

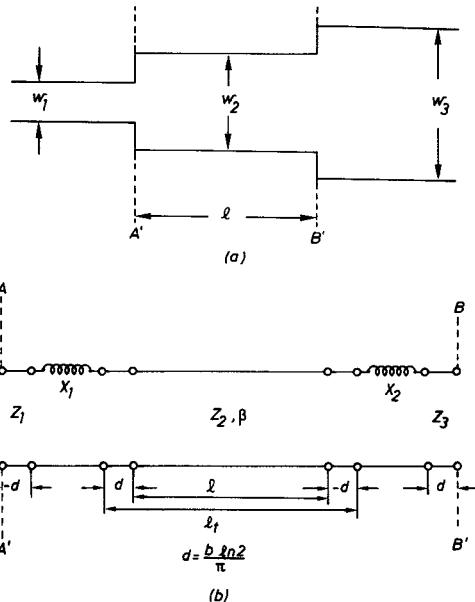


Fig. 1. (a) one-section stripline transformer
(b) equivalent circuit

and has a relative uncertainty.

The modulus of the input reflection coefficient, $|\rho| = |\rho|^0$, w.r.t. Z_1 and Z_3 is calculated from $Z_1, Z_2, Z_3, \beta, X_1$ and X_2 . If a worst-case analysis should find the upper bound of the input reflection coefficient, the effect of the assumed mismatches and arbitrariness of the reference planes is eliminated by using explicit formulas^{1,3}. These give the upper bound $|\rho_{in}|$ of the input reflection coefficient, w.r.t. Z_S and Z_L , as a function of $|\rho|^0, Z_1, Z_3$. The response function to be used in (15) is then, with a specification S ,

$$g = S - |\rho_{in}|^0$$

We take

$$\underline{p}^T = [w_1 \ w_2 \ w_3 \ L \ K \ E],$$

$$\underline{p}^{2T} = [w_1 \ w_2 \ w_3 \ l \ \epsilon_r \ b \ t]$$

$$\underline{p}^{3T} = [D_1 \ D_2 \ D_3 \ l_t^0], \quad \underline{p}^{4T} = [Z_1 \ Z_2 \ Z_3 \ \beta \ X_1 \ X_2]$$

$$p^5 = |\rho|, \quad p^{60} = |\rho_{in}|^0, \quad p^6 = g$$

There are 15 μ -variables.

Fig. 2 shows the result of a worst-case analysis, both using the complete formulation (a) and simplified formulations, obtained either by a reduction or by neglecting certain disturbing effects.

TABLE I. DATA FOR EXAMPLES

	Example 1	Example 2
nominal impedance generator, load mismatch (max.modulus of reflection coefficient)	50. Ω , 20. Ω 0.025 0.025	
dimensions of mask		
w_1, w	92.48 \pm 0.1 mm 178.20 \pm 0.1 mm	91.28 \pm 1. mm
w_2, w_3	308.84 \pm 0.1 mm	
L	168.74 \pm 0.1 mm	188.24 \pm 1. mm
K	0.05 \pm 0.5 % 0.02 mm	0.05 \pm 20. % 0.05 mm
ϵ_r	2.54 \pm 1. %	2.54 \pm 20. %
b	6.35 mm \pm 1. %	6.35 mm \pm 20. %
t	0.051 mm \pm 5. %	0.051 mm \pm 20. %
reduction factor		
etching tolerance		
dielectric constant substrate		
substrate thickness		
strip thickness		
uncertainty on effective line width D_1, D_2, D_3, D	1. %	3. %
total line length l_t^0	0.4 mm	
parasitic reactance X_1, X_2	3. %	

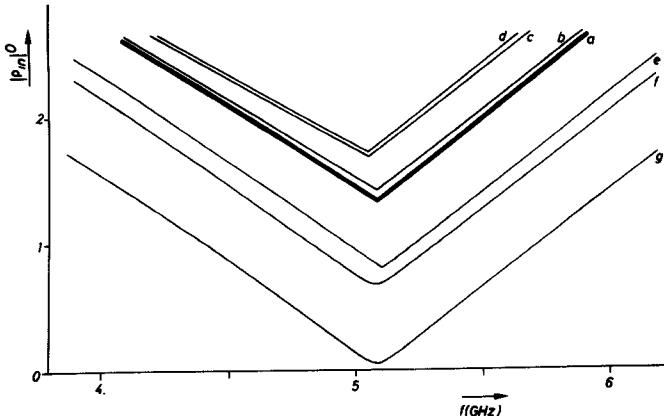


Fig. 2. Upper bound of input reflection coefficient of one-section stripline transformer, (a) general formulation; (b) formulation reduced with $i=2$; (c) formulation reduced with $i=4$; (d) formulation reduced with $i=2$ and $i=4$; (e) general formulation without model uncertainties; (f) idem, without model uncertainties and without tolerances; (g) nominal input reflection coefficient w.r.t. Z_1 and Z_3 .

Example 2. Consider a single stripline section (width w , length ℓ). We use the same relations as in example 1 and assume uncertainties on $W, L, K, E, \epsilon_r, b, t$ and D . Let

$$\underline{p}^{1T} = [W \ L \ K \ E], \quad \underline{p}^{2T} = [w \ \ell \ \epsilon_r \ b \ t], \\ \underline{p}^{3T} = [D], \quad \underline{p}^{4T} = [Z \ \tau]$$

where τ is the delay time. Relevant data are given in Table I. Fig. 3 shows the tolerance region R_p^4 in different situations. For cases c and d, the 4 uncertainties on \underline{p} were reduced to 2 uncertainties on w and ℓ . The effect of a reduction with $i=4$ is illustrated by the circumscribing orthotope R_p^{14} (case a).

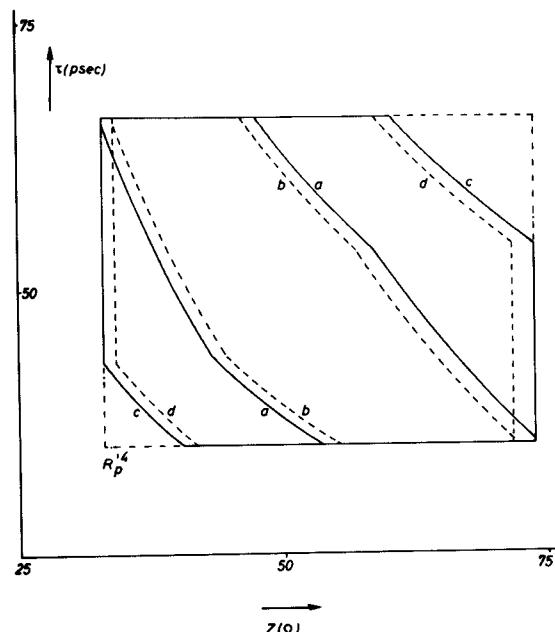


Fig. 3. Tolerance region R_p^4 in example 2; (a) complete formulation; (b) idem, without model uncertainty on D ; (c) formulation reduced with $i=2$; (d) idem, without model uncertainty on D .

Conclusion

The unified formulation of the network tolerance problem allows to take into account all effects that can disturb the response of microwave networks. It can be incorporated in existing methods for analysis and design, leading to realistic design procedures.

Acknowledgement

The author wishes to acknowledge several fruitful discussions with Dr.J.W. Bandler of McMaster University, Hamilton, Canada, which helped considerably to clarify the ideas presented.

The author was supported by a grant of the Belgian National Research Fund (NFWO).

References

- 1 H. Tromp, "The generalized tolerance problem and worst-case search", Proc. Conf. Computer-Aided Design of Electronic, Microwave Circ. and Systems, Hull, England, July 1977, pp.72-77.
- 2 H. Tromp, "Generalized worst-case design, with applications to microwave networks" (in Dutch) Doct. thesis, Faculty of Engineering, Univ. of Ghent, Belgium, May 1978.
- 3 J.W.Bandler, P.C.Liu, J.H.K.Chen, "Worst-case network tolerance optimization", IEEE Trans. Microwave Theory Techn., vol. MTT-23, 1975, pp.630-641.
- 4 J.W.Bandler, P.C.Liu, H.Tromp, "A nonlinear programming approach to optimal design centering, tolerancing and tuning", IEEE Trans. Circuits and Systems, CAS-23, 1976, pp.155-165.
- 5 J.W. Bandler, P.C. Liu, H. Tromp, "Integrated approach to microwave design", IEEE Trans. Microwave Theory Techn., vol. MTT-24, 1976, pp.584-591.
- 6 H. Tromp, "A semi-heuristic algorithm for efficient worst-case analysis", IEEE Int. Symp. Circuits and Systems, Tokyo, July 1979, to be presented.
- 7 K. Madsen, H. Schjaer-Jacobsen, "New algorithms for worst-case tolerance optimization", IEEE Int. Symp. Circuits and Systems, New York, May 1978, pp.681-685.
- 8 J.W.Bandler, H.L.Abdel-Malek, "Optimal centering, tolerancing and yield determination using multidimensional approximations", IEEE Int. Symp. Circuits and Systems, Phoenix, April 1977, pp.219-222.
- 9 H.L.Abdel-Malek, J.W.Bandler, "Yield estimation for efficient design centering assuming arbitrary statistical distributions", Int. J. Circuit Theory Appl., vol. 6, 1978, pp.289-303.
- 10 S.W.Director, G.D.Hachtel, "The simplicial approximation approach to design centering", IEEE Trans. Circuits and Systems, vol. CAS-24, 1977, pp.363-372.
- 11 H.M. Altschuler, A.A.Oliner, "Discontinuities in the center conductor of symmetric strip transmission line", IRE Trans. Microwave Theory Techn., vol. MTT-8, 1960, pp.328-339.
- 12 V.Nalbandian, W.Steenaert, "Discontinuities in symmetric stripline due to impedance steps and their compensations", IEEE Trans. Microwave Theory Techn., MTT-20, 1972, pp. 573-578.
- 13 H. Tromp, "Exact calculation of the uncertainty on the input reflection coefficient of arbitrary two-ports, due to mismatches and arbitrary reference planes", IEEE Trans. Microwave Theory Techn., vol. MTT-26, 1978, pp.973-978.